3.25.65 \(\int \frac {1}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx\) [2465]

Optimal. Leaf size=189 \[ \frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c \sqrt {d+e x} \sqrt {a+b x+c x^2}} \]

[Out]

2*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),(-2*e*(-4*a*c+b^2)^(1/2)/(2*c*
d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2))*2^(1/2)*(-4*a*c+b^2)^(1/2)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)*(c*(e*x+d
)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2)/c/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {732, 430} \begin {gather*} \frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} F\left (\text {ArcSin}\left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c \sqrt {d+e x} \sqrt {a+b x+c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]),x]

[Out]

(2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x^
2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqr
t[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(c*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*Rt[b^2 - 4*a*c, 2]*
(d + e*x)^m*(Sqrt[(-c)*((a + b*x + c*x^2)/(b^2 - 4*a*c))]/(c*Sqrt[a + b*x + c*x^2]*(2*c*((d + e*x)/(2*c*d - b*
e - e*Rt[b^2 - 4*a*c, 2])))^m)), Subst[Int[(1 + 2*e*Rt[b^2 - 4*a*c, 2]*(x^2/(2*c*d - b*e - e*Rt[b^2 - 4*a*c, 2
])))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx &=\frac {\left (2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {\frac {c (d+e x)}{2 c d-b e-\sqrt {b^2-4 a c} e}} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 \sqrt {b^2-4 a c} e x^2}{2 c d-b e-\sqrt {b^2-4 a c} e}}} \, dx,x,\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )}{c \sqrt {d+e x} \sqrt {a+b x+c x^2}}\\ &=\frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c \sqrt {d+e x} \sqrt {a+b x+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 20.47, size = 308, normalized size = 1.63 \begin {gather*} \frac {i (d+e x) \sqrt {2-\frac {4 \left (c d^2+e (-b d+a e)\right )}{\left (2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt {1+\frac {2 \left (c d^2+e (-b d+a e)\right )}{\left (-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} F\left (i \sinh ^{-1}\left (\frac {\sqrt {2} \sqrt {\frac {c d^2-b d e+a e^2}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}}}{\sqrt {d+e x}}\right )|-\frac {-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}}\right )}{e \sqrt {\frac {c d^2+e (-b d+a e)}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}} \sqrt {a+x (b+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]),x]

[Out]

(I*(d + e*x)*Sqrt[2 - (4*(c*d^2 + e*(-(b*d) + a*e)))/((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt
[1 + (2*(c*d^2 + e*(-(b*d) + a*e)))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*EllipticF[I*ArcSinh[
(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2*c*d + b
*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))])/(e*Sqrt[(c*d^2 + e*(-(b*d) + a*e))/(-
2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [A]
time = 0.82, size = 287, normalized size = 1.52

method result size
default \(\frac {\left (-e \sqrt {-4 a c +b^{2}}-b e +2 c d \right ) \EllipticF \left (\sqrt {2}\, \sqrt {-\frac {\left (e x +d \right ) c}{e \sqrt {-4 a c +b^{2}}+b e -2 c d}}, \sqrt {-\frac {e \sqrt {-4 a c +b^{2}}+b e -2 c d}{2 c d -b e +e \sqrt {-4 a c +b^{2}}}}\right ) \sqrt {\frac {\left (b +2 c x +\sqrt {-4 a c +b^{2}}\right ) e}{e \sqrt {-4 a c +b^{2}}+b e -2 c d}}\, \sqrt {\frac {\left (-b -2 c x +\sqrt {-4 a c +b^{2}}\right ) e}{2 c d -b e +e \sqrt {-4 a c +b^{2}}}}\, \sqrt {2}\, \sqrt {-\frac {\left (e x +d \right ) c}{e \sqrt {-4 a c +b^{2}}+b e -2 c d}}\, \sqrt {e x +d}\, \sqrt {c \,x^{2}+b x +a}}{c e \left (c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+a e x +x b d +a d \right )}\) \(287\)
elliptic \(\frac {2 \sqrt {\left (e x +d \right ) \left (c \,x^{2}+b x +a \right )}\, \left (-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {d}{e}\right ) \sqrt {\frac {x +\frac {d}{e}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {d}{e}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \EllipticF \left (\sqrt {\frac {x +\frac {d}{e}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {d}{e}}}, \sqrt {\frac {-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\right )}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+b x +a}\, \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+a e x +x b d +a d}}\) \(321\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-e*(-4*a*c+b^2)^(1/2)-b*e+2*c*d)/c*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e
*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*((b+2*c*x+(-4*a*c+b^2)^(1/2))*e/(e*(-4
*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))*e/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*2^(
1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)/e*(e*x+d)^(1/2)*(c*x^2+b*x+a)^(1/2)/(c*e*x^3+b*e*x^2+
c*d*x^2+a*e*x+b*d*x+a*d)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*sqrt(x*e + d)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.40, size = 119, normalized size = 0.63 \begin {gather*} \frac {2 \, e^{\left (-\frac {1}{2}\right )} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right )}{\sqrt {c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

2*e^(-1/2)*weierstrassPInverse(4/3*(c^2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)*e^(-2)/c^2, -4/27*(2*c^3*d^3 - 3*b*
c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*c)*e^3)*e^(-3)/c^3, 1/3*(c*d + (3*c*x + b)*e)*e^(-1)/c)
/sqrt(c)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {d + e x} \sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/(sqrt(d + e*x)*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*sqrt(x*e + d)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {d+e\,x}\,\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d + e*x)^(1/2)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/((d + e*x)^(1/2)*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________